Skip to main content

Role of Polyelectrolytes in Wastewater Treatment

 

Effluent Treatment or Industrial wastewater treatment consists of mechanisms and processes which are used to treat water that have been contaminated by anthropogenic, industrial or commercial activities prior to its release into the environment. Industrial wastewater serves as one of the important pollution sources that add up in polluting the water environment. The sewage sludge produced is subjected to sludge treatment. Many problems are associated with wastewater collection and treatment such as foaming, solid accumulation, high BOD, sludge de-watering, heavy metals and offensive odour.  But such treatments are no more complicated processes, since there are chemicals that are applicable for the treatment. These chemicals follow various treatment mechanisms in various different standards, which include from chemically treating raw wastewater before discharging it into the environment, to recovering valuable resources from sludge treatment and wastewater.



Conventional treatment consists of a combination of physical, chemical, and biological processes for removal of suspended solids, organic & inorganic contaminants, germs and microbes from wastewater. When using total wastewater treatment solutions, these chemicals remove and eliminate harmful pathogens, expel hazardous chemicals, detergents and toxins, reduce odour and improve water colour, and separate and extract valuable substances and clean water from the wastewater.

Polyelectrolytes are regarded as polymer chains with an electrolyte group on every repeat unit. When dissolved in a polar solvent, these polymers are charged due to dissociation of small counter ions that leave behind a charged micro ion. These are formulated in a way so as to be used as coagulants and flocculants as well as a sludge dewatering agent in the waste water treatment plants. Flocculants are chemicals responsible for bringing about secondary settling and sludge dewatering. They carry active groups with a charge which helps in counterbalancing the charge of the particles. Coagulants are referred to as chemicals that are used to help in the removal of colour and turbidity present in untreated, raw water and are used for their attributes like quick flocculation, precise pH value, etc.

Based on electrolyte group present in the chain, polyelectrolytes are categorized into anionic, cationic and non – ionic species. Cationic polyelectrolytes have positively charged group for use in coagulation of negatively charged flocs through electrostatic interactions. They are useful in various process of effluent r wastewater treatment, depending upon their molecular weight and charge density. Anionic polyelectrolytes have negatively charged group on each repeating unit, acrylamide-based polymers being the most available type. They are widely useful as flocculants, rheology modifiers, and adhesives and immensely used in municipal wastewater and effluent treatment. Anionic flocculants are also used in enhanced oil recovery, decolouring, paper making, mineral processing, etc. Non – Ionic Polyelectrolytes are organic high molecular weight polymers, used in flocculating colloidal suspensions, water clarification, sludge dewatering, etc.

In general, aqueous solutions having pH value more than 4 have negative charged suspended particles whereas having pH less than 4 contains positively charged suspensions. This might help in analysing the type of polyelectrolyte to be used in the treatment.

Chemtex Speciality Limited is an esteemed manufacturer and supplier of liquid and powder polyelectrolytes. For more information on our range of products, visit https://www.chemtexltd.com/products-and-solutions/water-treatment-chemicals/wastewater-treatment/

Popular posts from this blog

RO Antiscalant

Reverse Osmosis serves as one of the most critical processes that are involved in the process water treatment to clean water, utilized in various industrial process applications. Reverse Osmosis can be regarded as the process wherein semi-permeable membranes help in separating purified water from contaminated water. It occurs when a pressure is applied to the concentrated side of the membrane resulting in forcing purified water to the dilute side. Reverse Osmosis is very efficient for the treatment of brackish, surface and ground water for both large and small flow applications. Some examples of industries that use RO water include boiler feed water, food and beverage, pharmaceutical, metal finishing and semiconductor manufacturing to mention a few. The overall performance of a reverse osmosis system relies on various factors like feed water quality, membrane type, flow control, temperature and pressure. Systems must be well maintained for ensuring effective performance with any

Hybrid Organic Acid Technology (HOAT) Coolant

Optimal use of machines is directly proportional to its engine performance. What an engine does is it converts the supplied energy into its mechanical form, driving the machine to work. Engines require one-third of total heat that is generated during conversion and the rest of the heat is needed to be evacuated from the combustion chamber which would otherwise lead to engine failure. Earlier, water was preferred as an ideal coolant for quite a period of time but the problem started to arise when the temperature would become extremely high or low, to be precise temperature more than 100 ° C and below 0°C. To get rid of this problem, coolants were formulated. Coolants are categorized chemicals that increases the boiling point of the fluid and decreases the freezing point of the fluid to make it suitable for use in extreme heat and freezing conditions. Coolants are a proportionate mixture of antifreeze and solvent, mainly glycol and water. Ideally utilized as a preventive in

Antiscalant Chemical for RO Plant

  Reverse Osmosis System is a revolutionary invention to treat water and provide an effective solution for purifying water in various applications. The performance of RO can be ensured by the formation of scale and deposits on the membranes, leading to reduced efficiency and increased operational costs.   To prevent this issue, antiscalant chemicals play an important role in reducing the formation of scale and maintaining optimal RO Plant performance. Reverse Osmosis is widely used in various industries to treat water and to remove impurities such as salts, minerals, and other contaminants. The dense, thin, and semi-permeable layer allows water molecules to pass through while rejecting dissolved solids, and other impurities such as salts, minerals, and other contaminants. But the major issue that surfaces in such systems is the formation of scales due to the build-up of dissolved minerals and salts on the surface of the RO Membrane. RO Antiscalant Chemicals – Cost-effective Soluti