Skip to main content

Water Conservation of the Future

 Super Absorbent Polymer for Agriculture

 The foundation of Indian economy upon which nearly 30 percent of our GDP is based and around 60% of our population is directly or indirectly dependent, is agriculture. It has paved the way for many industrial developments over the years ergo playing a vital role in the Indian economic development. Indian irrigation infrastructure comprises nearly 39 mHa land by ground water, 22 mHa with irrigation canals, and 2/3rd is still monsoon dependent.

Water is one of the key elements in agriculture and agriculture requires significant amounts of water most of which is rain fed or harvested. Seeds and fertilizers fail to achieve full potential if plants are not watered regularly. With nearly 20% of the world’s population to feed, India has access to only 4% of fresh water resources, out of which 90% is used for agriculture.


With regional and temporal variation of rainfall, and an average rainfall of 125cm, India is home to great spatial variations of rainfall. Areas of less to scanty rainfall viz. Northern Kashmir, Rajasthan, Punjab, Karnataka and Deccan plateau, Upper Ganga valley, Andhra Pradesh, Tamil Nadu are most susceptible to drought with 54% of India’s arable lands depending on it. Annual rainfall of India being 1183mm, out of which 75% is received in a short span of four months (July – September).

Water scarcity has negative impact on agriculture, and harms environment with increased salinity, nutrient pollution, loss of flood plains and wetlands. Indian agriculture uses nearly 90% water, and shall soon be facing water shortage owing to fast depletion of ground water resources and poor irrigation systems.

With 140 mHa of cultivable land in India, 42% falls in drought prone areas. Out of the 90% water usage, roughly 20% is used owing to flawed and inappropriate water management system.

Super Absorbent Polymer (SAP) for Agriculture when mixed with soil can hold up to 300 – 400 times water than its own weight, significantly improving water retention capacity of the soil, soil permeability, build quality, plant growth, easier flow of nutrients and minerals to the plant, while reducing water stress, water wastage, irrigation frequencies, money and labour. The fundamentals of hydrogel agriculture technology are based on insoluble gel forming polymers that can improve water retention property of different soils. Hydrogel functions as a water reservoir round in the vadose (root) zone of the plant perfectly blended with the soil harvesting water.

Hydrogel for agriculture is mainly based on cross linked polyacrylamide (PAM) and cross linked acrylamide-acrylate polymers as they can retain their activity for a longer period. The water retention capacity arises from the hydrophilic functional group of the chain while the cross linked network of the polymer contributes for the resistance to self-dilution.

Polyacrylamide Hydrogels are mainly of two types: Soluble (linear chain) and Insoluble (cross linked). Linear PAM is water soluble and has been doing well in lowering irrigation induced erosion in agricultural fields. Cross linked PAM does not dissolve in water and inflates to around 250 - 400 times its actual volume forming a gel when in contact with water. Thus acting as water storage for irrigation and rainwater.

The working principle of hydrogels is based on the charge - cationic, anionic or neutral. This charge distribution decides the mode of action with the soil or solute.

The clay particles present in soils are negatively charged, the heavy metals have positive charges and different minerals available in soils can hold a positive or a negative charge. Thus cationic hydrogels easily bind to clay and helps in flocculation, and anionic hydrogels are mainly used as a dispersant.

This water absorbing property of hydrogel increases manifold as the force of attraction between the gel and the soil particles becomes higher.

Significance of Hydrogel for Agriculture

·         Increases water holding capacity of the soil

·         Reduces irrigation frequency

·         Limits water and nutrient loss from soil

·         Enhances plant growth and performance

·         Reduces surface erosion and water runoff

·         Long term protection against drought and groundwater contamination

·         Reduces NPK leaching when dry mixed with fertilizer preparations

·         Delivery system for Mycorrhiza

Chemtex Speciality Limited manufactures and markets Hydrogel for Agriculture under the brand name of Alsta Hydrogel. With notable mentions on Wikipedia, to success stories on YouTube, Chemtex Speciality Limited is widely acknowledged for its service in modern agriculture.

For more information about Alsta Hydrogel, feel free to visit http://www.hydrogelagriculture.com or email at mailto:info@hydrogelagriculture.com

 

Popular posts from this blog

RO Antiscalant

Reverse Osmosis serves as one of the most critical processes that are involved in the process water treatment to clean water, utilized in various industrial process applications. Reverse Osmosis can be regarded as the process wherein semi-permeable membranes help in separating purified water from contaminated water. It occurs when a pressure is applied to the concentrated side of the membrane resulting in forcing purified water to the dilute side. Reverse Osmosis is very efficient for the treatment of brackish, surface and ground water for both large and small flow applications. Some examples of industries that use RO water include boiler feed water, food and beverage, pharmaceutical, metal finishing and semiconductor manufacturing to mention a few. The overall performance of a reverse osmosis system relies on various factors like feed water quality, membrane type, flow control, temperature and pressure. Systems must be well maintained for ensuring effective performance with any

Hybrid Organic Acid Technology (HOAT) Coolant

Optimal use of machines is directly proportional to its engine performance. What an engine does is it converts the supplied energy into its mechanical form, driving the machine to work. Engines require one-third of total heat that is generated during conversion and the rest of the heat is needed to be evacuated from the combustion chamber which would otherwise lead to engine failure. Earlier, water was preferred as an ideal coolant for quite a period of time but the problem started to arise when the temperature would become extremely high or low, to be precise temperature more than 100 ° C and below 0°C. To get rid of this problem, coolants were formulated. Coolants are categorized chemicals that increases the boiling point of the fluid and decreases the freezing point of the fluid to make it suitable for use in extreme heat and freezing conditions. Coolants are a proportionate mixture of antifreeze and solvent, mainly glycol and water. Ideally utilized as a preventive in

Antiscalant Chemical for RO Plant

  Reverse Osmosis System is a revolutionary invention to treat water and provide an effective solution for purifying water in various applications. The performance of RO can be ensured by the formation of scale and deposits on the membranes, leading to reduced efficiency and increased operational costs.   To prevent this issue, antiscalant chemicals play an important role in reducing the formation of scale and maintaining optimal RO Plant performance. Reverse Osmosis is widely used in various industries to treat water and to remove impurities such as salts, minerals, and other contaminants. The dense, thin, and semi-permeable layer allows water molecules to pass through while rejecting dissolved solids, and other impurities such as salts, minerals, and other contaminants. But the major issue that surfaces in such systems is the formation of scales due to the build-up of dissolved minerals and salts on the surface of the RO Membrane. RO Antiscalant Chemicals – Cost-effective Soluti